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Abstract— Phospholipids and cholesterol were found to be the main lipids in mature and immature
neuroblastoma cells. The ratios for the total cholesterol/phospholipids in these undifferentiated and
differentiated cells were 0.33 and 0.52, respectively. The ratios of 0.45 and 0.62 were obtained with
corresponding plasma membrane fractions. Individual fatty acid contents in the loosely bound lipid
fraction were higher than in tightly bound lipids. The total levels of saturated fatty acids increased in both
of these fractions. While arachidonic acid content significantly decreased, it increased simultaneously
(600%) in the free fatty acid fraction during differentiation. The amount of cholesterol esters increased
three-fold as a result of maturation.

For the first time it was possible to detect. in neuroblastoma cells, several lipids, namely N-
acylphosphatidylethanolamine, N-acylethanolamine and semilysobisphosphatidic acid. They all changed
during maturation, Total N-acylphosphatidylethanolamine content decreased by 50%, disappearing
completely from membrane fractions. N-Acylethanolamine disappeared from the cell as well as from
membrane fractions. On the other hand the total cellular content of semilysobisphosphatidic acid
increased without any alterations in its membrane content.

Functional implications of our investigations are discussed.
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Neuroblastoma is a tumor which may spontaneously
regress.”"” This is an interesting process but very little
is known about its mechanism. That is why neuro-
blastoma cells adapted to the in vitro conditions are
widely used as a model for studying malignant cell
differentiation.

Generally there are a few per cent of spontaneously
differentiating cells in cell culture of mouse or human
neuroblastoma. These cells possess certain morpho-
logical, electrophysiological and biochemical proper-
ties of a maturc neuron. In order to induce
morphological and biochemical changes within the
same cell population, inhibitory agents of cell prolif-
eration are used. Many reports indicate that cAMP
plays a key role in neuroblastoma maturation. An
elevation of the intracellular level of cAMP by
dibutyryl cAMP, prostaglandin E or by inhibitor of
cAMP phosphodiesterase induces many differenti-
ated functions of mature neurons.*-**

Differentiation of mouse neuroblastoma cells can
also be induced by $'-bromodeoxyuridine,*” di-
methylsulfoxide,® serum-free medium,” medium
supplemented with delipidated serum,” X-ray-
irradiation,”! nerve growth factors,”* gangliosides'®
and many other agents,?"3! 344

The properties of neuroblastoma cells differenti-
ated by these agents have been described.** How-
ever, we have little information until now about lipid
composition of mature and immature neuroblastoma

*To whom correspondence should be addressed.
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cell. #3262 Comprehensive data are available for other
cell lines.?>*” Some papers deal with lipid composition
and lipid metabolism in neurons and neuroblastoma
cells 6960 65 However, there is no correlative infor-
mation about changes in lipid content during
differentiation.

The aim of the present investigation was to per-
form detailed studies on neuroblastoma cell lipid
composition during maturation. We endeavored to
determine the content of phospholipids, cholesterol,
cholesterol esters, the content of glycerols, free fatty
acids and acyl chains in the individual lipids. The
fraction of lipids tightly and loosely bound with
proteins in mature and immature cells were also
characterized.

Experiments from many laboratories have re-
ported that different agents which caused mor-
phological cell differentiation induced unidentical
biochemical changes in cells.'™** From this we
studied the effect of some agents on the main lipid
cell component, phospholipids, in comparative as-
pect. In these experiments the dibutyryl cAMP,
5’-bromodeoxyuridine, dimethylsulfoxide, serum-free
medium and gangliosides were used. All other experi-
ments were performed with 5'-bromodeoxyuridine as
a differentiating agent.

EXPERIMENTAL PROCEDURES

Cell culture

Neuroblastoma C1300 NI8 cells were cultured in the
presence of 10% bovine serum at 37°C in Eagle's medium.
To induce cell differentiation, 5'-bromodeoxyuridine, di-
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methylsulfoxide and dibutyryl cAMP were added to
the culture medium in concentrations of 4 x 10~ M, 2%
and 1 x 107> M, respectively. Serum-free medium supple-
mented with 50-100 pg/4 ml bovine brain gangliosides was
also used. The cells were used for the experiment on the
fourth day of cultivation. They were suspended in 0.9%
sodium chloride, centrifuged at 2000 r.p.m. at 4°C and
homogenized.

Assay methods

Microthin layer chromatography. Lipid extracts were
prepared from cell homogenates by the method of Bligh
and Dyer.” Phospholipids were analysed by thin layer
two-dimensional chromatography on silica gel plates
(60 x 60 mm?) by using the chloroform-methanol-benzene—
28% ammonia (65:30:10:6) and the chloroform-methanol-
benzene-actone-acetic acid-water (70:30:10:4:5:1)2% ag
solvent systems.

To detect small amounts of phospholipids, molybdate
and malachite green spray reagents were used.’®"" Detection
and identification of N-acylphosphotidylethanolamine was
done in special chromatographic solvent systems.-%

Gas—liquid chromatography. Quantitative determination
of N-acylethanolamine was performed on gas chro-
matograph GC-9A (Schimadzu, Japan) with synthetic stan-
dards using FQ-capillary column 0.2 x 25 (mm i.d. x m)
with chemically bound OV-101. Column temperature
was 285°C; the temperature of detector and of injector
was 295°C. The rate of flow of carrier-gas (Helium) was
65ml/min, and that of hydrogen was 30 ml/min.

Cholesterol, cholesterol esters, free fatty acids and glycer-
ols were quantitatively determined on gas chromatograph
“Chrom-5" (CSSR) with dual flow system DIP. Column of
3 x (.5 (mm i.d. x m) containing OV-1, 1.5% on Shimalite
80100 mesh (Shimadzu, Japan) was used. The column
temperature programme was between 100 and 350°C with
a rate increase of 2°C/min. Injector and detector tem-
perature was 350°C, the rate of flow of carrier gas (helium)
was 100/min, the rate of flow of hydrogen was 28 ml/min.

The delipidized protein pellets were extracted twice with
chloroform-methanol (1:1, v/v) and three times with meth-
anol in order to obtain a fraction of loosely bound lipids
with protein. The last methanol extract had no detectable
fatty acids. These extracts were combined with the extract
obtained by the method of Bligh and Dyer’ and designated
as a fraction of loosely bound lipids. The protein pellets
were suspended, homogenized and hydrolysed for 45 min at
100°C with 2% sodium methylate to obtain the tightly
bound lipid fraction. In order to obtain methyl esters of
fatty acids, the probes were treated with 3 M hydrochloric
acid in methanol for 40 min at 100°C.>

The methyl esters of fatty acids of the tightly and loosely
bound lipids were analysed by gas chromatograph
“Chrome-5", Glass column 3 x 2.4 (mm id. x m), 10%
Silar 10CP on Chromosorb W/HP, 80-100 mesh was used.
Temperature programme was 140-250°C, at the rate of
2°C/min.

Internal lipid standards

Fluorocholesterol and triglycerol of lauriait acid were
used as internal standards for gas chromatography. Before
lipid extraction, exact amounts of these compounds were
added to the cells. Fluorocholesterol was not modified after
all analytical procedures while trilaurate degradated with
formation of methyl esters of lauric acid. The amount of
cholesterol and fatty acids was calculated from the contents
of internal standards in the probe.

Membrane fractions

Plasma membrane and microsomal [fractions were iso-
lated by the method of differential centrifugation in Percoll
and Ficoll. Plasma membrane banded in Percoll zone
1.04-1.05 density, while the microsomal fraction banded in

the Ficoll zone 1.17-1.18 density. All procedures for mem-
brane isolation and the testing of the purity of membrane
fractions were performed as described.*
Acetylcholinesterase activity was analysed by the method
of Ellman et 4" Protein content was determined by the
method of Lowry er al®
The function of sodium channels was examined as

described.*

RESULTS

Characterization of cell differentiation

Cell differentiation was monitored by morpho-
logical features and by protein content and acetyl-
cholinesterase. Undifferentiated cells were small
(40 ym D), round with or without short neurites.
Differentiated cells were two-three times larger, of
polygonal form with long (more than 50 pum)
neurites. The protein content of undifferentiated
cells in logarithmic and stationary growth phases
was 140-160 ug/10° and 180-190 ug/10° cells, re-
spectively. Protein quantity increased to 250-280 ug/
10 cells in differentiated cells and activity of acetyl-
cholinesterase increased almost 10 times. The velocity
of ion efflux through veratridine-activated sodium
channels of mature cells was five—six times higher
than in immature culture. These data show that
the cells possess distinct characteristics of mature
neurons, ¥

Changes in phospholipid contents of cells differentiated
by different agents

The total and individual phospholipid contents
were examined in mature and immature cells (Table
1). The content of total phospholipids was nearly
twice as high as that of immature ones. The main part
of phospholipids was represented by phosphatidyl-
choline. Its relative quantity did not change as a
result of differentiation in all studied cases. Lyso-
phosphatidylcholine was undetectable in immature
cell and in cells differentiated in the presence of
S’-bromodeoxyuridine, dimethylsulfoxide and di-
butiryl cAMP. However, this phospholipid appeared
in cells cultured in serum-free medium. The addition
of gangliosides increased the lysophosphatidylcholine
level two-fold.

Phosphatidylinositol level in cells differentiated in
serum-free medium and in the presence of ganglio-
sides was lower than in undifferentiated cells and cells
treated by other agents.

It is of interest to note that phosphatidyl-
ethanolamine content in cells cultured in serum-free
medium, in medium with gangliosides and in the
presence of dibutyryl cAMP increased during
differentiation. However, it did not change in cells
treated by 5-bromodeoxyuridine and dimethyl-
sulfoxide when compared to immature cells.

In the presence of 5-bromodeoxyuridine, dimethyl-
sulfoxide and serum-free medium diphosphatidyl-
glycerol content was constant during differentiation.
Its level decreased in cells treated by dibutyryl cAMP



Table 1. The phospholipid content in undifferentiated cells and cells differentiated by different agents of neuroblastoma C1300 NI8

Differentiated cells

Undifferentiated -

dimethylsulfoxide,  dibutiryl cAMP, serum-free gangliosides,
medium, n =6

5'-bromodeoxyuridine,

cells

n==at
21.43 +0.68

Phospholipids

42 44 £ 2 2%%%

49,09 + | 1.14%**

41.31 £ 2.84%%+

Total phospholipids nmol/10° cells

Phosphatidylcholine

37.26 + 0.47%**
61.94 4+ 1.17

61.02 £ 1.11

60.00 + 1.04

6292412

35.60 + 0.66%**
62.51 +2.34
15.60 +0.97

62234217

17.24 £ 0.34*%**

19.02 + 0.33%*+
1.43 £0.1

20.65 + 1.08**

-
&

16.06 + 1.77

14.68 + 0.41

Phosphatidylethanolamine

3.60 £ (. 28*+*

JEkE

4.66 £0.57

4.68 +0.59

5224048

4.62 +0.30

Lysophosphatidylcholine
Phosphatidylinositol
Phosphatidylserine
Sphingomyelin

3.26 + 0.04*
3.09+0.16
3.45+0.02
1.8420.19
6.25 + 0.28%%%

2.37 + 0.10%%*

3.54 +0.24%
297+0.12
2.27 £0.30%*
2.24 +0.30
3.01 £0.17

3.53 + 0.30%**

4.12 +0.19%=*
3.51 +0.59
.59 + 0.59
0.92 +0.14

2.60 +0.15*

3.86 +0.45
3454+ 0.64
1.67 +0.34
3.35+0.59
247 +0.71

4.20 £ 0.23%*=*
4.14 £ 0.34
1.79 £ 0.72
2.84 +0.61
3.84 +0.93

3.00+0.29
4.54 +0.43
248 +0.13
366 +0.18

Phosphatidylglycerol
Diphosphatidylglycerol

1.82 +0.06
Values are expressed as % ofl total phospholipids. M £ m.

Unidentified phospholipids + start zone
*P <0.05; **P <0.01:

2P < 0.001,
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and gangliosides. Differentiated and undifferentiated
cells did not contain phosphatidic acid.

and
differentiated by

Phospholipid  content in  plasma membrane
microsomal  fraction of cells
S'-bromodeoxyuridine

Phospholipid content per milligram of protein
in both fractions remained constant during differen-
tiation. Similarly, small amounts of lysophos-
phatidylcholine detected in plasma membrane and
microsomal fractions did not change during cell
maturation (Table 2).

Phosphatidylcholine, sphingomyelin and phospha-
tidylinositol levels were equal in plasma membranes
of differentiated and undifferentiated cells. Phospha-
tidylethanolamine and phosphatidylserine levels in-
creased in plasma membrane of mature cells. The
total amount of phospholipids with high chro-
matographic mobility decreased in plasma membrane
of differentiated cells. The level of phosphatidylserine
increased in microsomal fractions, but phosphatidyl-
choline, phosphatidylethanolamine, sphingomyelin
and phosphatidylinositol were found to be constant
during maturation.

N-Acylphosphatidylethanolamine and N-acylethanol-
amine content in  neuroblastoma  cells
maturation

during

The levels of semilysobisphosphatidic acid and
lyso-N-acylphosphatidylethanolamine increased in
the differentiated cell (Table 3). Lyso-N-acylphos-
phatidylethanolamine was located mainly in
membrane fractions. The amount of semilysobis-
phosphatidic acid in membrane fractions represented
only part of the total cell semilysobisphosphatidic
acid. Thus it was also present in other cell compart-
ments.

More than half of the N-acylphosphatidyl-
ethanolamine content was located in membranes. The
total quantity of the N-acylphosphatidylethanol-
amine decreased by nearly 50% in the mature cell and
lowered to trace values in membrane fractions during
differentiation.

The small amount of N-acylethanolamine was
determined in the whole undifferentiated cell and in
its plasma membrane. In differentiated cells only
traces of N-acylethanolamine were found.

Composition of tightly and loosely bound lipid frac-
tions in differentiated and undifferentiated cells

The tightly bound fatty acids represented a small
fraction (nearly 1-5%) of total fatty acids. Six un-
saturated fatty acids were found only in the loosely
bound lipid fraction. (Tables 4 and 5). The amount
of individual fatty acids notably differed in fractions
of tightly and loosely bound lipids of undifferentiated
cells. Neuroblastoma cell maturation led to signifi-
cant changes of fatty acid composition in tightly and
loosely bound lipids.
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The content of many polyunsaturated fatty acids
decreased in loosely bound lipids during differenti-
ation. Simultaneously two fatty acids (16:0 and 18:0)
increased by 50 and 100%, respectively. We also
found decreased levels of some unsaturated fatty
acids in tightly bound fatty acids after maturation.
while the contents of 16:0, 18:0 and 18:1 w9 fatty
acids increased.

All  data described above show that cell
differentiation caused an increase of the total amount
of saturated fatty acids in both the fractions. Simul-
tanecously the cholesterol content increased only in
the fraction of loosely bound lipids (by 40%) and it
did not change in the fraction of tightly bound lipids
(per milligram of protein). The data given in Table 6
demonstrate the increased quantity of cholesterol,
cholesterol esters and free fatty acids as a result of cell
differentiation (calculated in 10 cells). The ratio of
cholesterol/phospholipids changed from 0.33 in
undifferentiated cells to (.52 in differentiated ones. In
comparison with the whole cell, the plasma mem-
brane was enriched in cholesterol. Plasma membrane
cholesterol/phospholipid ratios in undifferentiated
and differentiated cells were 0.45 and 0.62, re-
spectively, indicating an increase both in the absolute

Table 4. The changes of fatty acid content in lipids loosely
bound with proteins in neuroblastoma CI300 NI8 cells
during differentiation (percentage of total amount)

Fatty Undifferentiated Dilferentiated
acid chains cells, n =7 cells, n==6
14:0 1.60 + 0.06 0.90 +0.22%
ail5:0 0.25 4+ 0.01 0.23 +0.01
15:0 060 +0.12 0.50 +0.33
15:1w8 0.14 +0.02 0.11 +0.01
i16:0 0.20 4 0.02 0.20 + 0.03
ail6:0 0.20 £+ 0.02 0.13 4+ 0.01
16:0 26.20 +0.90 39.00 £ 2.68%**
16: 109 2.004+0.12 240+ 0.10
16: w5 0.40 + 0.09 Trace
17:0 1.10 £ 0.16 1.6l +0.20
17: 1w 10 0.44 +0.02 0.47 +£0.04
17: 18 0.40 4+ 0.04 011 4 0.02%%*
18:0 1100 + 0.67 22.81 4 0.96%*#*
18: 109 2530 £+ 1.10 22,40 4+ 1.95
18:2w6 5201021 2.20 £ 0.2 %**
18:3w3 0.33 £ 0.01 0.12 £ 0.0]1%**
19:1 0.51 +0.01 0.13 + 0.01***
20:0 0.51 £0.01 0.39 £ 0.0 ***
20: 1w 11 1.14 4+ 0.01 0.68 + 0.01***
20:2wm6 1.16 + 0.02 111 +£0.01*
20:3m9 0.17 £ 0.01 0.14 £0.01
20:3m6 0.94 4+ 0.01 1.06 4+ 0.01*%*
20:4wm6 11.40 £ 0.03 2.52 4 ().49%+x*
20:5m3 0.13 £ 0.01 0.154+0.08
22:0 1.26 4+ 0.04 0.23 + 0.04%%*
22: 1w 11 1.91 +0.17 (.65 4 0.1 7***
22:3m6 0.41 +0.02 0.64 4 0.02%**
22:4m6 2.1040.03 2.50 £ 0.03%**
22:5m3 3.06 4+ 0.04 3.60 £ 007+
22:603 0.31 +£0.01 0.50 £ 0.0]***
Total saturated 42.90% 65.90%
Total unsaturated 57.47% 40.99%

Table 5. Fatty acid content in lipid fractions tightly bound
with proteins in undifferentiated and differentiated neuro-
blastoma C1300 NI18 cells (percentage of total amount)

Fatty Undifferentiated Differentiated
acid chains cells. n =7 cells. n==6
14:0 1.49 + (.01 0.51 £ 0.01%**
ai 15:0 0.17 £ 0.01 0.13 +0.01*
15:0 1.09 + 0.02 0.22 4 Q.02%**
15: 18 0.24 +0.01 017 4+ 0.0 **=
i16:0 0.42+0.02 .34 + 0.04
ai 16:0 0.39 +0.01 018 + 0.01***
16:0 20.50 £ 3.38 42200 + | .(19=**
16:1w9 4.80 +0.76 2.10 £+ 0.28%*
16:1ws none none
17:0 2.204+0.19 114 + 0, 15%*
17:Tew 1O 0.574+0.04 trace
17: 1w 8 0.18 +£0.01 0.23 £ 0.01**
18:0 22,60 + 2.81 3260 + 0.95%*
1B: 1w 9 13.60 +0.14 19.30 4+ 0.95%+*
18:2w6 2.10+£0.27 0,19 4 0.03%**
18:3m3 none none
19:1 0,39+ 0.01 0.21 £ 0L.D3%**
20:0 0.50 +0.03 031 4 0.03%*
20: 1w 11 0.26 + 0.01 Lrace
20:2w6 0.12 +0.01 0.13 £+ 0.01
20:3m9 none none
20: 36 0.45 4+ 0.04 0.55 +0.02
20:4m6 17.60 + 1.86 1.27 4+ 0.30%+*
20:5e3 0.15+0.01 0.12 £ 0.01
22:0 0.46 +0.02 016+ 0.01*
22: 1w 11 1.07 +0.06 0.11 + 0.05*
22:3m6 none none
22:4m6 2344 0.72 2.04 +0.51
22:5m3 none none
22:603 none none
Total saturated 49.82% 77.79%
Total unsaturated 43.87% 26.40%

*P =005 **P <001 *=P <0001,

content and in the relative proportions of cholesterol
in neuroblastoma cells during maturation.

The content of free fatty acids and farty acvl chains in
individual lipids of mature and immature cells

The analysis of results presented in Tables 79
showed that the total contents of saturated fatty acids
in cholesterol esters, triglycerols. phosphatidylserine.

Table 6. Cholesterol, cholesterol ester, glycerol and frec
fatty acd contents in undifferentiated and differentiated
neuroblastoma C1300 NI¥ cells

Undifferentiated  Differentiated

Lipids cells cells
nmol/10° cells

Cholesterol 7.09 4+ 0.28 18.62 £ 0.51***

Free fatty acids 0.06 +0.01 (.54 4+ 0.08%**

Mono, -di- and

triglycerols 1.67 +0.34 2.1540.14

pmol/ 10° cells

Cholesterol esters 843 +0.75 24,90 4 2. 20%%=

fg/mg protein
Cholesterol in loosely

bound fraction 20904195 27.20 4 0.95%=*
Cholesterol in tightly
bound fraction 1.40 4+ 0.21 1.70 £+ (.61

*P < 0.05: ***P < 0.001.

N.S.C 30/ |—F

n=10; *#*P <0.01; ¥**P < 0.001.
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Table 8. Fatty acyl chains in the content of phosphatidylethanolamine and phosphatidylcholine

of neuroblastoma C1300 NIB cells (% of total amount)

Phosphatidylethanolamine

Phosphatidylcholine

Fatty acid UndifTerentiated Differentiated Undifferentiated Differentiated
chains cells cells cells cells

14:0 none none 0.234£0.04 0.2540.03
15:0 (a1 +n) none none 0.28 £0.02 0.26 +0.04
15:1 0.12+0.01 0.36 £+ 0.04%* 0.11 +0.01 0.12 £+ 0.01
16:0 (ai 41+ n) 334 +0.27 5.17 £0.43¢* 11.74 + 0.82 19.37 + 0.R7**
16:1 (9 + @ 5) 0.51 £0.04 0.86 + 0.09* 2134024 2,14 4013
17:0 0.96 + 0.06 .41 £0.11* 0.36 + 0.02 0.63 +0.04**
17:1 (w10 £ w8) 0.77 £ 0.05 2.12 4+ 0.34* 1.07 +£0.12 2.09 £0.36
18:0 2083 £ 116 2361 +1.48 18.82 + 1.09 19.03 +2.17
18: w9 15.04 +0.72 11.52 4+ 0.43* 3749 + 247 318 £ 1.65
18:2w6 2,78 +0.49 2.78 £0.63 4.86 4+ 0.22 501 £0.74
18:3w3 0.10 +0.02 0.12 +0.01 0.63 +0.04 0.74 + 0.08
19:1 0.44 +0.03 0.21 £ 0.03** 0.42 + 0.04 0.36 + 0.06
20:0 0.41 +0.05 (.40 + 0.05 0.86 + 0.06 1.24 £ 0.10*
20: len 11 2.36 +0.37 230 £ 042 269 40,18 293 4+0.37
20:2w6 0.39 + 0.04 0.42 +0.03 0.26 +0.02 0.34 + 0.06
20:3mw9 1.16 +0.12 1.07 £ 0.08 1.34 +0.07 0.88 + 0.04**
20:3w6 1.47 +0.08 1.16 +0.09 1.57 £ 0.11 1.03 4 0.04**
20:4m6 23.63 +0.93 19.20 +0.79* 8.16 +0.36 4.72 4+ 0.48**
20:5w3 1.01 £ 0.06 0.63 + 0.03** 0.56 4+ 0.02 0.41 £0.04*
22:0 0.65 +0.05 0.24 + 0.02** 0.43 +0.03 0.18 +0.01%*
22wl 0.83 +0.06 0.51 4+ 0.03*= 0.99 +0.10 148 +0.12%
22:3m6 0.32 + 0.03 0.37 +0.05 0.41 +0.02 0.27 £ 0.03*
22:4wb 7.99 + 0.48 9.12 +0.54 3.01 +0.30 2994043
22:5m3 12.56 + 0.81 13.47 +0.97 1.38 +0.15 1.43 +0.24
22:6m3 2.334+043 296 +0.26 0.454+0.03 0.76 4+ 0.08*
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*P <005 **F <001

phosphatidylinositol, phosphatidylethanolamine and
phosphatidylcholine increased on average by 25%
during differentiation. Only in sphingomyelin were
the same amounts of saturated fatty acids in mature
and immature cells detected.

In all studied individual lipids of differentiated cells
the decreased level (average by 50%) of arachidonic
acid was found. Only in the fraction of free fatty acids
did the quantity of arachidonic acid rise six times
higher in differentiated cells, while the amount of
saturated fatty acids decreased.

DISCUSSION

The cell membranes are considered to be partly
responsible for the control of growth and
differentiation.*** Hence, it is of great importance to
study structural and functional properties of mem-
branes in differentiated and undifferentiated cells in
order to clarify the mechanisms of cell maturation.
Neuroblastoma CI1300 N 18 clone can be induced to
undergo differentiation by relatively simple pro-
cedures. Cells treated by 5’-bromodeoxyuridine,
dimethylsulfoxide, dibutyryl cAMP, serum-free
medium and exogenous gangliosides developed mor-
phological, electrophysiological and biochemical
characteristics of mature neurons. However, different
agents caused different changes in cell lipid com-
position during maturation.

Phospholipids and cholesterol were found to be the
main lipid components in mature and immature cells.

Plasma membranes in particular were enriched in
cholesterol as compared with the whole cell. This was
suggestive of their decreased fluidity in comparison
with undifferentiated cells."'® Another result sup-
ported this suggestion. The total level of saturated
fatty acids significantly increased (by nearly 25%)
during differentiation. But at the same time we
found an increased quantity of cholesterol esters.
In some cases lysophosphatidylcholine appeared in
differentiated cells. These two lipids are known to
increase membrane fluidity and permeability. Hence
we cannot conclude how plasma membrane fluidity
became modified during maturation in  neuro-
blastoma cell. It is known that microviscosity of
different transformed cells can be increased or de-
creased depending on the cell line.* Therefore this
question needs special investigation.

The main part of all phospholipids in neuroblas-
toma cells is represented by phosphatidylcholine.
Plasma membrane is enriched in phosphatidylcholine
as compared with the microsomal fraction. The rela-
tive proportion of phosphatidylcholine was constant
during differentiation. Phosphatidylethanolamine
and phosphatidylserine levels increased in plasma
membrane of differentiated cells. Consequently, the
membrane phosphatidylcholine/(phosphatidylethanol-
amine + phosphatidylserine) ratio lowered. These
changes help to acquire different physicochemical
properties in membranes of differing lipid com-
position.

It is considered that lysophosphatidylcholine is not
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the constant component of intact neuroblastoma
cells. However, we detected small amounts of lyso-
phosphatidylcholine in membrane fractions of
mature and immature cells. This is in agreement with
recent observations.*

The amount of lysophosphatidylcholine remained
constant in membrane [ractions ol cells differentiated
by §-bromodeoxyuridine. However, in cells differ-
entiated in the presence of serum-lree medium and in
the same medium supplemented with gangliosides,
the lysophosphatidylcholine amount significantly
increased.

In our experiments phosphatidylglycerol and di-
phosphatidylglycerol were undetectable in membrane
fractions. There are conflicting reports as regards
their presence in membranes, "

Compared to the whole cell, plasma membranes
were enriched in  sphingomyelin and phospha-
tidylinositol. They were characterized by a high
cholesterol/phospholipid ratio and by the presence of
almost half of the total cell N-acylphosphatidyl-
ethanolamine. This unique lipid composition could
contribute to the specialized and dynamic properties
of the plasma membrane. In [act. the distinet changes
in cell and cell membrane lipid composition during
cell differentiation are shown to correlate with the
appearance of specialized membrane properties. "+

For example, the excitable membrane appears only
in differentiated cells. Recent reports demonstrate a
striking increase (about 10 times) in insulin receplors
in mature neuroblastoma cells."™* There are some
cell lines which differ in their competence to be
induced to differentiate into mature cells. The plasma
membranes of these lines have different physical
properties which are correlated with their fatty acid
acyl chain composition.” This shows that protein
membrane functions depend on lipid membrane com-
position. Membrane proteins interact with membrane
lipids through several types of non-covalent lorces.
Recently it has been published that latty acids can be
tightly (covalently) bound with membrane pro-
teins.™** These lipids cannot be extracted by organic
solvents. In order to determine whether neuro-
blastoma C1300 N 18 cell proteins contain tightly
bound lipids we examined the fatty acids which
remained with proteins after exhaustive extraction
with organic solvents. As a result, we found more
than 20 fatty acids in cach fraction. The quantity of
individual fatty acids was higher in the [raction of
loosely bound lipids. The difference in the com-
position of loosely and tightly bound lipids was
suggestive of their different functional roles.

The content of fatty acids in both fractions
changed in a different way during differentiation.
However, the total amount of saturated fatty acids
increased by nearly 25% in both the fractions.
The content of unsaturated fatty acids decreased in
mature cells.

The particularly significant decrease of arachidonic
acid in tightly and loosely bound lipid fractions and

in all studied individual lipids appears to have func-
tional implications. As reported for other trans-
formed cells** the level of arachidonic acid in our
experiments increased in the [ree fatty acid fraction
during differentiation.

Little information is available on the mechanisms
of lipid composition changes during neuroblastoma
cell differentiation. It is described that these cells in
culture casily incorporate lipids from the culture
medium.* However. the lipid uptake from culture
medium is a sclective process which depends on the
functional characteristics of the cell. It is thus possi-
ble that the process ol lipid uptake takes place
through different ways in mature and immature cells.
The observed difference in fatty acid composition can
also be explained by the decreased desaturase activ-
ities in malignant cells.”** As the ncuroblastoma
line is of tumor origin, the high quantity ol saturated
fatty acids may reflect the necoplastic nature of the
cells.

For the first time we found two phospholipids with
high chromatographic mobility in neuroblastoma
cells. They were identified as N-acylphosphatidyl-
cthanolamine and semilysobisphosphatidic acid in
special solvent systems.

It is necessary (o stress the changes in N-acylphos-
phatidylethanolamine  and  N-acylethanolamine
contents. The amount of cell N-acylphosphatidyl-
cthanolamine decrcased by 50% as a result of cell
maturation. While N-acylphosphatidylethanolamine
disappeared from membrane fractions of mature
cells. N-acylethanolamine was detectable neither in
the whole cell nor in the membrane
differentiated cells.

Recently it has been shown that N-acylphospha-
tidylethanolamine and
the components of some normal and ischemic verte-
brate tissue.'" "% N-Acylphosphatidylethanolamine
and N-acylethanolamine are known to accumulate in
infarcted myocardium:'® N-acylethanolamine can
change membrane permeability.'""*  N-Acylphos-
phatidylethanolamine was also found in some
transformed cells. The enzyme systems for its bio-
synthesis and catabolism are found in dog brain
preparations.**

In this work we have reported. for the first time,
the presence of N-acylphosphatidylethanolamine and
N-acylethanolamine content in neuroblastoma cells.
The drastic changes in the quantity of these lipids
during cell differentiation suggest that these could in
fact be of physiological significance.

Nothing is known about the physiological role of
semilysobisphosphatidic acid in neuroblastoma cells.
However, the concentration of this compound
changed notably during differentiation in whole cell
and remained constant in plasma membranc and
microsomal fractions. Even then one cannot exclude
the possibility that this minor phospholipid with high
chromatographic mobility is of some physiological
significance. However, it remains to be investigated.

fraction ol

N-acylethanolamine  are
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CONCLUSION

Thus we like to conclude that the investigated
changes in lipid compositions of undifferentiated and
differentiated neuroblastoma cells do contribute to
characterizing the process of malignant cell
differentiation.
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